找回密码
 新注册用户
搜索
查看: 3798|回复: 1

[新闻] CORONAVIRUS – WHAT WE’RE DOING AND HOW YOU CAN HELP IN SIMPLE TERMS

[复制链接]
发表于 2020-3-16 09:44:50 | 显示全部楼层 |阅读模式
https://foldingathome.org/2020/03/15/coronavirus-what-were-doing-and-how-you-can-help-in-simple-terms/

CORONAVIRUS – WHAT WE’RE DOING AND HOW YOU CAN HELP IN SIMPLE TERMSMarch 15, 2020
TL;DR: We’re simulating the dynamics of COVID-19 proteins to hunt for new therapeutic opportunities. Scroll to the bottom of the page to see a list of ways you can help.
Proteins are molecular machines that perform many functions we associate with life. They sense the environment (e.g. in taste and smell), perform work (e.g. muscle contraction and breaking down food), and play structural roles (e.g. your hair). They are made of a linear chain of chemicals called amino acids that, in many cases, spontaneously “fold” into compact, functional structures. Much like any other machine, it’s how a protein’s components are arranged and move that determine the protein’s function. In this case, the components are atoms.
Viruses also have proteins that they use to suppress our immune systems and reproduce themselves.
To help tackle coronavirus, we want to understand how these viral proteins work and how we can design therapeutics to stop them.
There are many experimental methods for determining protein structures. While extremely powerful, they only reveal a single snapshot of a protein’s usual shape. But proteins have lots of moving parts, so we really want to see the protein in action. The structures we can’t see experimentally may be the key to discovering a new therapeutic.
Using football as an analogy for the experimental situation, it’s as if you could only see the players lined up for the snap (the single arrangement the players spend the most time in) and were blind to the rest of the game.
Seeing a single structure of a protein (left) is like seeing players lined up for the snap in football. Important information, but a lot missing too. The protein structure shows a sphere for each atom (blue) and red arrows highlighting the one drug binding site in this protein.
Our specialty is in using computer simulations to understand proteins’ moving parts. Watching how the atoms in a protein move relative to one another is important because it captures valuable information that is inaccessible by any other means.
Taking the experimental structures as starting points, we can simulate how all the atoms in the protein move, effectively filling in the rest of the game that experiments miss.


A movie capturing how the protein shown before moves is like getting to watch the whole football game. In this case, we see a pocket form that was absent in the experimental structure.
Doing so can reveal new therapeutic opportunities. For example, in our recent paper, we simulated a protein from Ebola virus that is typically considered ‘undruggable’ because the snapshots from experiments don’t have obvious druggable sites. But, our simulations uncovered an alternative structure that does have a druggable site. Importantly, we then performed experiments that confirmed our computational prediction, and are now searching for drugs that bind this newly discovered binding site.
An experimental structure of an Ebola protein doesn’t have obvious druggable sites (no deep pockets among the atoms shown as spheres).

Our simulations captured a motion that creates a potentially druggable site in this Ebola protein. Instead of showing spheres for each atom, this cartoon shows a ribbon tracing the linear chain of amino acids (chemicals) the protein is made of.
We want to do the same thing with coronavirus, and you can help! In fact, there are a number of ways you can help, and they’re not mutually exclusive.
  • Downloading Folding@home and helping us run simulations is the primary way to contribute. These calculations are enormous and every little bit helps! Each simulation you run is like buying a lottery ticket. The more tickets we buy, the better our chances of hitting the jackpot. Usually, your computer will never be idle, but we’ve had such an enthusiastic response to our COVID-19 work that you will see some intermittent downtime as we sprint to setup more simulations. Please be patient with us! There is a lot of valuable science to be done, and we’re getting it running as quickly as we can.
  • If you don’t have computers to contribute or are feeling particularly generous, you can also make donations through Washington University in St. Louis. These funds are used for a number of purposes, including: 1) supporting our software engineering and server-side hardware (particularly important right now as we scale up rapidly!) and 2) buying compounds to test experimentally based on insight from our simulations.
  • Of course, please take precautions to help prevent the spread of the virus by washing your hands, social distancing, etc. Doing so helps sustain the medical system and buys scientists time to hunt for therapies.


回复

使用道具 举报

发表于 2020-3-17 12:51:44 | 显示全部楼层
大意:
普通的蛋白质x射线结构图都是静态的,而我们FAH可以动态模拟蛋白质分子。
拿橄榄球为例,一般药物筛选都是拿右图来筛的。但是一旦橄榄球开球,所有的分子(橄榄球运动员)都在动,他们的潜在药物靶点也在不断变化。
又以埃博拉研究为例,前段时间我们通过动态模拟发现了一个静态结构下不可能作为药物靶点的靶点,但在蛋白质构型折叠变换中,这个靶点却变成了潜在药物靶点。
参加FAH就像买彩票,你多进行一次模拟,就像多买一张彩票,多增加了一次中奖(发现药物靶点)的机会。
毕竟梦想总是要有的,万一实现了呢!革命尚未成功同志仍需努力!

评分

参与人数 2基本分 +23 收起 理由
mikutiger + 3 <font style="vertical-align: inh
金鹏 + 20 辛苦了!

查看全部评分

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 新注册用户

本版积分规则

论坛官方淘宝店开业啦~
欢迎大家多多支持基金会~

Archiver|手机版|小黑屋|中国分布式计算总站 ( 沪ICP备05042587号 )

GMT+8, 2024-4-26 01:14

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表