找回密码
 新注册用户
搜索
查看: 5483|回复: 3

[已翻译,待校对] 志愿者计算项目需要您的支持

[复制链接]
发表于 2010-3-23 21:15:18 | 显示全部楼层 |阅读模式
来源:http://www.distributedcomputing.info/news.html
原载:Computer Power User - http://www.computerpoweruser.com/editorial/article.asp?article=articles/archive/c1003/46c03/46c03.asp
标题:Volunteer Computing Needs You - 志愿者计算项目需要您的支持
作者:Steve Smith
日期:2010年3月
概要:志愿者计算项目发展回顾。

有愿意帮助翻译的,请直接回帖(可以先占座,再翻译或编辑)
全文下载地址:http://www.mofile.com/pickup/uwvowsz8juhbh30/
回复

使用道具 举报

发表于 2010-3-26 06:07:30 | 显示全部楼层
本帖最后由 hawkwolf 于 2010-3-26 06:20 编辑

志愿者计算计划依赖您的参与

分布式计算项目设计的新思路


是时候对折腾主板的电脑爱好者,以及贡献自己电脑空闲计算能力给有益应用的人说说了, 众多科研人员一直在找寻更多能够使用的CPU计算能力,现在也想吸引您更多的关注.

当然分布式计算是迷人的. 象SETI@Home,在搜寻天空中外星人发给我们的信号; 还有GIMPS (Great Internet Mersenne Prime Search 因特网梅森素数大搜索;www.mersenne.org)继续搜寻新的素数;一个更广泛的研究小组正在开发志愿计算网格的能力以找到治疗癌症的方法以及用于其它的全球人道主义事业(World community Grid);寻找新的药物(Docking@Home);甚至用于记录地震(Quake-Catcher Network)。

分布式计算利用众多普通的桌面电脑的CPU计算能力的空闲,合成了一个强大的计算能力,这已经成为各领域科研人员的一个重要工具。那些早期最著名的志愿者计算计划现在仍在发展、扩大。

SETI@Home, 一个搜寻太空智慧生命信号的项目, 现在又推出了一个名为Astropulse的计划,也可用于搜寻脉冲星和黑洞。
Folding@Home, 一个研究蛋白质折叠以便更好的了解疾病的项目,在2009年初公布,而现在,这项目已经集合了足够多的桌面电脑的CPU、PS3游戏机的处理器、Nvidia和AMD显卡的GPU,组成了一个拥有5千万亿次/秒浮点运算能力的超级计算机。

事实上,显卡的GPU已经一些分布式计算项目的主要贡献来源,按Folding@Home所说,尽Nvidia显卡就提供了2千万亿次/秒浮点运算能力。这是一种经济、却有强大计算能力的资源,它让分布式计算达到一个新高度。
例如:Einstein@Home项目,一个找寻宇宙中的脉冲星(旋转的中子星)的项目,需要处理来自引力波探测器的大量数据,这些数据来自在波多黎各阿雷西博天文台上、地球上最大的射电望远镜之一,这巨大的望远镜的扫描宇宙中脉冲星数据每五分钟增量一次。

据康奈尔大学天文学教授、此项目的开发者,Jim Cordes介绍,“我们的原始数据能生成大约1000个用于处理的单一数据组,每组这样的数据需要约12小时的计算时间。 5分钟的数据需要大约一万小时的计算时间来处理。没有那个大学里常见的计算中心能分析这些数据,给这类项目提供支持”。 但是,它能通过一百万的电脑主机来完成,这些电脑通过BOINC平台(Berkeley Open Infrastructure for Network Computing的简写:boinc.berkeley.edu)联系在一起,这个平台原来是为SETI@Home项目使用的。除了Folding@Home,它使用自己的分布式计算平台,而绝大多数的学术项目现在都在使用BOINC系统来让志愿者把他们CPU和GPU的闲置计算能力贡献给正在进行的项目中。对于Cordes来说,BOINC让他能先把天文数据的一小批发送到一台电脑上,“接受到数据的电脑在运行几小时或一天后,把完成的结果发送回来”,同时又会有新的数据发送给接受电脑继续运算,高效率处理完所有原始数据。Einstein@Home现有200TB(2的30次方字节)的原始天文数据处理量,不过正计划把这数据提高到1PB(2的50次方字节,1024TB)。该项目已经证实,并发现了脉冲星。

“志愿者计算给了我以低成本获得更多计算能力的途径,”Michela Taufer 说到,“我可以随时拥有我所需要的大计算量”。Taufer,特拉华大学的计算机与信息科学系的助理教授,指导Docking@Home项目,这是一个通过模拟小分子如何“对接”到蛋白质上来测试新药的项目,这需要模拟成百上千个潜在模型。对于一个权力不大的成员,在大学的超级计算机上能获得的自己可用的计算使用时间是很少的。 但通过采用BOINC,她有了13,000名志愿者加入了Docking@Home,贡献了26,000台电脑的空余计算能力用于她的研究。按照她所说“现实中能轻易得到这些计算能力是很难的”。一个自由、界面友好的系统出现,像是BOINC,不仅开创了计算能力的新层次,也促进了创新。
“志愿者计算给了我以低成本获得更多计算能力的途径,所以,我可以随时拥有我所需要的大计算量。”

人力资源

分布式计算的概念,在新近的一年里已经不断扩大,不仅是空闲的计算能力了。现在,一些研究人员正把人本身作为分布式计划的资源。

2001年, NASA建立了"Clickworkers"项目,志愿者依靠视觉在清晰的火星照片上定位陨石坑。在2009年末,航天局联合微软发布了Be A martian!(做个火星人)在线项目,把火星测绘变成了一个网络游戏。类似的有英国的Galaxy Zoo(galaxyzoo.org)项目,超过15万人帮助分析由望远镜得到的宇宙和星系图片以加以分类。

“某种意义上,人也是一部电脑”,Landon Curt Noll所认为的,他是密码学家、思科的安全设计师,同时也是电子边界基金会的协同计算奖小组的成员。“这种混合工作方式是令人兴奋的。 天文学有大量的数据只是在等人去分析。您不需要建立一个人工智能引擎,你可以利用的志愿工作时间的优势并利用好后续计算,来使研究更有意义。”

另一个混合工作的项目,是让我们深入了解我们的地球所发生的情况,叫做Quake-Catcher Network(qcn.stanfor.edu),它使用BOINC平台并利用运动传感器来记录地震活动。 “任何一周,我们都有超过1000个传感器给我们回传数据”, 美国加州河谷大学的助理教授,Elizaberth Cochran 介绍说。 使用这些集成或连接在电脑上的运动传感器,在加州和欧洲,志愿者网络已经在收集地震数据。 她说:“我们已经记录到最近在加州北部新发生了6.5级地震,在斯坦福的一个地震捕手成员的传感器测到了另一个4级的低等级地震,这个数值来自传感器高密度地区,如洛杉矶和加州。”


分布式科学

由于现在许多领先的分布式计算项目是多年前开发的,而吸引任何形式的人力资源是需要更多社会宣传和沟通技巧的。 这些项目的成功不只是在于项目本身,象地震捕手或星系测绘,它让人觉得很酷。

“成功要在于用户兴趣、资金,以及与志愿者良好沟通能力的结合。”加州伯克利的空间科学实验室的程序员,同时也是3位BOINC专职程序员之一的Rom Walton是这样认为的。“如果一个项目不能与它的志愿者们良好的沟通,他们会遗弃它,而它的结果只有消亡。”

去年,于BOINC相关的大计划之一是Intel发起的Progress Thru Processors(www.facebook.com/progressthruprocessors),试图每天在用户里推广分布式计算项目。

Walton介绍说,“主要的沟通机制是Facebook,人们可以看到他们的朋友里如何为分布式计算作了多少计算时间的贡献。”Walton认为社会媒体是分布式计算的沃土,有它的策划对分布式计算会是个很好的构思。计算网格正学会利用网上的社会网格。 人们告诉其他人有关他们感兴趣的项目、贡献了多少计算能力也会是炫耀的资本。 Intel的Facebook上有125,000个粉丝。今后,BOINC软件可能会直接与Facebook的接口一起工作,这样新的项目只要发布到网上,就会自动建立它的Facebook主页、链接、在社会网络上吸引更多志愿者的加入。

Walton的设想“我的想法是让BOINC有更加友好的社会网络功能。”不过,在友好沟通来临前,分布式计算计划也最好听听来自科学界的不同声音。

Cochran的地震捕手项目,不只是地震爱好者的专利,也进入了K-12的教室。她说:“我们可以提供这方面的教育活动,老师们也可以在教室里教授有关地震的知识。”地震捕手们可以走进教室,亲自安装并示范传感器如何工作。作为交换,他们要求这个班级保留传感器并工作一年。 “任何地震的活动记录,都会展示在全班人的面前”,这是她的想法。

Taufer 确信,增加BOINC平台的用户群的沟通功能,以及通过BOINC与社会网络分享数据,这会是分布式计算项目的一个大机遇,来维持志愿者们对科学的热情。 “志愿者们将会有更大的动力来学习科学而成为一个科学家”,她说。

分布式计算技术会持续进步。Walton说, 现在的BOINC支持Nvidia和AMD显卡的GPU,但并不是每个项目都能好好利用这巨大的、潜在的计算能力。

Noll认为,高度复杂的项目,例如:计算一个有100百万位的素数  ,这就需要更先进的算法,能让众多电脑更加系统工作在一起,成就大的计算量。 电子前沿基金会近来颁发了$100,000给GIMPS的成员,奖励其发现了第一个超过10百万位的素数。下一阶段的奖金是为超过100百万位的素数设立 $150,000,这将迫使计算学家们去发展分布式计算的策略。
Noll的意见:“要么我们等到机器发展到足够快,或等到人类进化到足够聪明能让众多电脑一起完美合作”。

不过,对于科学而言,最大的进步和机会是,志愿者计划给了科学工作者们一个能交流的、更广泛的受众群体。

Cordes认为,“那会有更多的回报。”
“这使得我的项目有了结果,也使得大众参与进来。他们是教育的良好载体。他们吸引大众到网站上去阅读和理解这些信息。这是个双赢的局面。”

最后, 研究人员们希望您能体会到,在志愿计算项目里,使它成为分布式的不仅仅在于计算能力,而是对科学本身更深、更广的领悟。

评分

参与人数 3基本分 +180 维基拼图 +90 收起 理由
BiscuiT + 150 + 55
霊烏路 空 + 35
Youth + 30 翻译得不错~~

查看全部评分

回复

使用道具 举报

发表于 2010-3-26 06:10:31 | 显示全部楼层
原文 文本, 有兴趣的就继续完成吧


Volunteer Computing Needs You


Distributed Computing Projects Drive New Ideas


Time to man up those motherboards, computer enthusiasts, and give some of that unused desktop power to those who really can put it to goods use.

Academic researchers are looking for a few good CPU cycles (and now even a few good human eyeballs).

Although fascinating distributed computing projects, such as: SETI@Home scour the skies for signs of E.T. phoning us, and GIMPS (Great Internet Mersenne Prime Search;www.mersenne.org) continues to find new prime numbers, an even wider group of researchers are starting to tap the voluntary computing grid to find cures for cancer and other worldwide humanitarian causes (World community Grid),look for new drugs (Docking@Home),and even track earthquakes (Quake-Catcher Network).

Distributed computing, which uses the spare CPU cycles on ordinary desktops to participate in massive computing projects, has become an important tool for researcher of all kinds.

---------

The most famous volunteer computing projects are still expanding.

The SETI@Home project, which looks for radio signals from space to indicate intelligent life, just launched a spin-off project called Astropulse, which also searches for pulsars and black holes.

Folding@Home, which studies protein folding mechanisms to better understand disease, reported in early 2009 that it now had combined enough desktop CPUs,PlayStation 3 Cell processors,and Nvidia and AMD GPUs to create 5 petaflops of computing power.

In fact, GPUs have become major contributors to some projects. Folding@Home says that Nvidia chips alone are responsible for 2 petaflops.

---------

It's that kind of cheap, massive computing power that is bringing distributed computing to a new level.

The technology is helping academics imagine research endeavors that would have been improbable a few years ago.

For instance, the Einstein@Home project is looking for pulsars (or spinning neutron stars) in space by processing date from gravitational wave detectors as well as data from one of the largest radio telescopes on earth, the Arecibo Observatory in Puerto Rico. The big telescope dish scans the cosmos for pulsars in five-minute increments.

---------

"Our raw data sets generate about 1,000 individual data sets, and each of those processes requires about 12 hours of computer processing," says Jim Cordes, professor of Astronomy at Cornell and a developer of the project.

"Five minutes of data takes about 10,000 hours of computing time to process. No typical university computer center can analyze that data to search for these kinds of objects."

---------

But it can be done via the 1 million host computers now participating in the project via the BOINC (Berkeley Open Infrastructure for Network Computing:boinc.berkeley.edu) platform, which was a by-product of the SETI@Home project.

Aside from Folding@Home, which has its own distributed computing platform, most academic projects now use the BOINC system to let your desktop CPU and GPU share cycles with an ongoing project.

--------

For Cordes, BOINC lets him send a small batch of observatory data to a single computer."[The receiving computer] churns away at [the data] for hours or a day and sends it back"

And there is no dearth of jobs to send.

Einstein@Home cruuently has 200TB of raw observatory data and plans to grow that to 1 petabyte.

The project has already confirmed and discovered pulsars.

-------

"Volunteer computing provides me with cheap access to a lot of computers," says Michela Taufer.

"Ican compute as much as I need."

Taufer, an assistant professor at University of Delaware's Department of Computer and Information Sciences, directs the Docking@Home project, which is testing new drug concepts by simulating how small molecules "dock" with proteins.

This requires simulating hundreds of thousands of potential moudels.

For a junior faculry member,acquiring an institution's own computing time requires lengthy applications and only small windows of actual usage on the college supercomputer.

But by deploying BOINC, she has 13,000 volunteers for Docking@Home dedicating 26,000 computers to the task.

------

"It is very tough to get all of this computation done easily," she says.

The emergence of a free and user-friendly system such as BOINC hase not only opened up new levels of computing power but also helped to fuel innovation.

"Volunteer computing provides me with cheap access to a lot of computers, so I can compute as mush as I need."


*******************************
People Power

The distributed computing concept has expanded in recent year to engage more than just computer cycles.

Now, some researchers are using humans themselves for distributed taskes.

In 2001, NASA initiated a "Clickworkers" project that had volunteers visually scan hi-res images of Mars to map craters.

In late 2009,the space agency joined with Microsoft to launch the Be A martian! online project(beamartian.jpl.nasa.gov/welcome) that turns Mars mapping into a game.

The modelresembles the Galaxy Zoo(galaxyzoo.org) project in the UK, where more than 150,000 people help review telescope images of the cosmos and classify the galaxies by their shape and features.

-------

"People are computers, too," says Landon Curt Noll, cryptologist and security architect at Cisco Systmes and a member of the Electronic Frontier Foundation's Cooperative Computing Award team.

"That kind of hybird approach is exciting. Astronomy has a massive amount of data just waiting for someone to analyze. You don't need to build an artificial intelligence engine, but you can take advantage of people volunteering time and using back-end computing to make sence of the research."

One hybird project that is contributing to our understanding of very down-to-earth events is the Quake-Catcher Network(qcn.stanfor.edu),which uses BOINC coupled with motion sensors to record earthquake activity. (See sidebar.)

"We have over 1,000 sensors in any given week that are sending us data back," says Elizaberth Cochran, assistant professor at the University of California, Riverdale.

Using motion detectors both in and attached to PCs clustered in California and Europe, the network of volunteers has gathered data on seismic events.

--------
"We have a number of records from the recent magnitude 6.5 in northern California," she says.

A number of Quake-Catcher sensors at Stanford picked up another lower-level magnitude 4.

"The value comes in getting a high density of sensors in places like Los Angeles and California."

*************************************************

Distributing Science

As many distributed computing project leader have discovered over the years, however, engaging people power of any sort requires more community outreach and communications skills than many academics are prepared for.

These programs succeed not merely because projects such as quake catching or galaxy mapping are cool.

--------
"[Success] is combination of user interest, funding, and the ability to communicate with volunteers," says Rom Walton, computer programmer/analyst at the University of California, Berkely's Space Sciences Laboratory and one of three full-time programmers of the BOINC infrastructure.

"If a project is unable to communicate with its volunteers, they go away and it ends up dying."

--------
One of the biggest programes associated with BOINC in the last year has been the Intel-sponsored Progress Thru Processors (www.facebook.com/progressthruprocessors) initiative, which tries to popularize distributed computing projects among everyday users.

--------
"The primary communication mechanism is Facebook," says Walton.

"People can see how their friends are doing in terms of how much computing time they've contributed."

--------
Walton sees social media as fertile ground for distributed computing because it maps so well against the distributed computing idea.


The computer grid is learning to use the online social grid.

People tell others about the projects that interest them and share bragging rights over how much they contributed to various computing causes.

Intel's Facebook page has 125,000 fans.

In coming years, the BOINC software may work directly with Facebook APIs so that new projects coming online with automatically create their own Facebook page and link and recruit users on the social networks the volunteers have already embraced.

----------
"Our idea is to make BOINC more social network-friendly," says Walton.

But in becoming more community-friendly, distributed computing projects are also learning to spread the word about science.

Cochran's Quake-Catcher project is reaching beyond seismic enthusiasts into K-12 classrooms.

----------
"We can provide educational activities and teachers with information about earthquakes to teach in class," she says.

The Quake Catchers can come to class and give live demonstrations of the sensor at work.

In exchange they ask the class to maintain it for a year.

"Any earthquakes the record can be shown to the class.", she says.

----------

Taufer believes that adding functions for communicating with the user base and sharing data on social networks through the BOINC platform will help turn some of thest distributed computiing projects into great opportunities to retain volunteers by educating them about science.

-----------
"The volunteers are more actively learning and becoming scientists," she says.

------------
The technology of distributed computing continues to make advances.

Walton says that BOINC now supports both Nividia and AMD GPUs, but it's up to each project to make greater use of this enormous untapped power.

Noll says that highly complex projects, such as calculating a prime number with 100 million digits, will require new algorithms that let many PCs work more cooperatively on a single large calculation.

The Electronic Frontier Foundation recently awarded $100,000 to a GIMPS member machine that discovered the first prime number with more than 10 million digits.

The next level of award, $150,000 for a 100 million-digit prime, was designed to force computer scientists to advance the art of distributed computing.

----------

"It is going to require that we either wait for machines to get fast enough or for people to get smart enough about how to make computers cooperate," says Noll.

----------

But the biggest advance and benefit for science in these volunteer projects could be in giving scientists a broader audience with whom to speak.

----------
"It has so many payoffs," says Cordes.

"It makes the case for our projects and for people being involved.

They are a great vehicle for education.

They attract people to Web sites to read and digest information.

It is just a win-win."

---------

In the end, researchers hope that what really is being distributed in voluntary computing projects is not just processing power but a deeper and broader understanding of science itself.

--------
by Steve Smith

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Caught in the web

Corralling The Quake Catchers

The volunteer distributed computing model has inspired many researchers to consider new ways of utilizing the millions of connected PCs in the world - and not just for their sheer computing power.

Seismologist Elizabeth Corchran of the University of California,Riverside and her colleagues at other institutions developed the Quake-Catcher Network(qcn.stanford.edu).

One way this system detects earthquake activity is use the accelerometers that are already in many laptops to protect hard drive shock.

For desktop PCs, an inexpensive sensor sits on the floor and is connected to the PC via USB port.

The BOINC distributed computing platform then processes and sends the data to Stanford, UC Riverside's partner in this project.

Corchran explains how the technology works and with this is the kind fo project than can only be done affordably with dedicated volunteers.

-----------------------

CPU: You use BOINC differently from most other distributed computing projects.

Cochran: Most of the BOINC-related work is to read the acceleration data of of the sensors.

There is minimal computation.

It is lookinig at the incoming signal and seeing whether it is significant compared to the previous minute.

That is how we end up getting a trigger so we only send data back when there is significant movement.

The sensors using about 1% to 2% of the CPU.

----------------

CPU: How can you tell the difference between a quake and someone shaking their computer?

Cochran: We have a triggering algorithm that looks at the incoming signal and compares them to frequency bands typical of an earthquake.

But we really can't tell the difference between someone shaking their computer and someone in an earthquake.

The way we get around this is using a lot of sensors in a region.

---------------

CPU: So, in this case, a lot of the actual computing happens at your servers?

Cochran: All of these very small amounts of data go back to our server.

We send back the time, the amplitude, the sensor information, location,and type of sensor.

And we take all of that information in at our server and then quickly determine if the triggers are correlated in time and space.

---------------

CPU: What is this research telling you than traditional seismic observations can't?

Corchran: The distributed computing side makes it really easy to have anyone set up these sensors.

A lot of the problem in seismology is you have very complicated equipment that takes experts to set up.

This allows us to actually use reqular people to set us scismic stations for us and greatly expand the number of stations.

The BOINC software has made it really easy to set up a project.

In a few months, we were able to get some sort of platform running and get seismic data cominig back.
回复

使用道具 举报

发表于 2010-4-2 06:19:20 | 显示全部楼层
原文 文本, 有兴趣的就继续完成吧

hawkwolf 发表于 2010-3-26 06:10


剩下的那一小段:

捕捉地震,就在网上!
——布阵地震捕捉仪


志愿分布计算模型使得众多研究者考虑采用全新的方式来利用数百万的联网计算机,而不仅只是利用他们全部的计算能力。

加利福尼亚大学河岸分区的地震学家Elizabeth Corchran以及她在其他机构的同事共同开发了地震捕捉网络(qcn.stanford.edu)。这个系统探测地震活动的方式之一是利用许多笔记本计算机内已安装的用于保护硬盘震荡的加速度计来收集震动数据。台式电脑则可通过USB连接安放于地面的廉价传感器来收集数据。

BOINC负责搭建计算平台,处理数据,再将数据发至斯坦福大学(他们是加州大学河岸分区在这个项目上的合作伙伴)。Corchran解释了这项技术如何运作,以及伴之而来的经济情况欠佳,只能依靠热诚的志愿者才能实现的项目。
----------
CPU: 相较于其他大多数分布计算项目,你利用BOINC的方法不同。
Cochran: 在我们的项目中,大多与BOINC相关的工作是读取传感器的加速度数据。这是最少的计算。它只是看看震动的输入信号相比于前一分钟是否有显著变化,由此判断触发条件。只有发生了显著变化,我们才会发回数据。传感器只占用CPU计算能力的1%到2%。

CPU: 如何判断地震引发的震动和人为晃动电脑引发的震动之间的区别?
Cochran: 我们有个触发算法,可以分析震动输入信号,并与地震的典型频率带做比较。但我们的确不能确定地震引发的震动和人为晃动电脑引发的震动之间的区别。我们的解决方法就是在一个地区里使用许多传感器。

CPU: 那么如此说来,许多真正的计算是在你们的服务器里完成的?
Cochran: 所有个体的少量数据都会传送到我们的服务器,包括时间,振幅,传感器信息,所处位置,和传感器类型。我们收集全部信息于服务器中,然后迅速判断触发条件在时间和空间上是否相互关联。

CPU: 这项研究能提供哪些传统地震观测所不能提供的信息?
Corchran: 分布计算这一概念让任何人都能轻松的设置传感器。地震学中的一个很大问题在于你的那些复杂仪器只有专家才能设置。而这个新技术实际上允许我们利用普通人来建立“地震站”,从而极大的增加了“地震站”的数量。BOINC软件则使创建一个项目变得非常简单。几个月内我们就能让平台开始运行并收到返回的地震数据。

评分

参与人数 2基本分 +90 维基拼图 +50 收起 理由
BiscuiT + 90 + 25
霊烏路 空 + 25

查看全部评分

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 新注册用户

本版积分规则

论坛官方淘宝店开业啦~

Archiver|手机版|小黑屋|中国分布式计算总站 ( 沪ICP备05042587号 )

GMT+8, 2024-4-20 08:54

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表