中国分布式计算论坛

 找回密码
 新注册用户
搜索
查看: 6081|回复: 15

[已转移到维基条目] [FAH] Michael Levitt 的诺贝尔奖背后的科学

[复制链接]
发表于 2013-11-23 20:50:52 | 显示全部楼层 |阅读模式
原载:Stanford News - http://news.stanford.edu/news/20 ... science-100913.html
标题:The science behind Michael Levitt's Nobel Prize - Michael Levitt 的诺贝尔奖背后的科学
作者:BRUCE GOLDMAN
日期:2013年10月9日
概要:2013年诺贝尔化学奖10月9日在瑞典揭晓,3名美国化学家马丁·卡普拉斯(Martin Karplus)、迈克尔·莱维特(Michael Levitt)和亚利耶(Arieh Warshel)因给复杂化学体系涉及了多尺度模型而分享奖项。本文介绍 Michael Levitt 所做的工作,通过计算机建模来构建基于氨基酸序列预测的蛋白质分子结构。

本站新闻贴:http://www.equn.com/forum/thread-25057-34-1.html 第 504 楼。

评分

参与人数 1维基拼图 +8 收起 理由
昂宿星团人 + 8 辛苦了!

查看全部评分

发表于 2014-2-24 19:18:08 | 显示全部楼层
本帖最后由 vincentdark 于 2014-2-25 23:01 编辑

@昂宿星团人 @碧城仙  翻译完毕,请校对!

The science behind Michael Levitt's Nobel Prize
Michael Levitt 的诺贝尔奖背后的科学


Modeling can predict a protein's molecular structure based on its amino-acid sequence.
通过基于氨基酸序列的模拟,可以预测蛋白质的分子结构


By Bruce Goldman

Michael Levitt, PhD, has dramatically advanced the field of structural biology by developing sophisticated computer algorithms to build models of complex biological molecules.
迈克尔·莱维特(Michael Levitt)博士通过开发尖端的计算机算法来构建复杂的生物学分子模型,在结构生物学领域取得了显著成果。

Applying known three-dimensional structures and basic principles of physical chemistry as complementary guidelines, this modeling can, for example, predict a protein's molecular structure on the basis of that protein's amino-acid sequence.
以已知的三维结构和物理化学的基本原理为基准,这种模拟可以,例如:通过蛋白质的氨基酸序列来预测蛋白质的分子结构。

Proteins are long concatenations of chemical subunits called amino acids, and their job description is manifold. First, they do the vast bulk of every cell's physical work by catalyzing chemical reactions and shipping smaller molecules from place to place. They also are the key building blocks of the complex skeletons and scaffolds that maintain each cell's geometry. Further, a protein can serve as a messenger both within and between cells by contacting another protein with a complementary shape.
蛋白质是由一串很长的被称为氨基酸的化学亚基组成的,这些氨基酸的作用是多方面的。首先,他们承担了每个细胞内的大部分体力活:催化化学反应和搬运较小的分子。其次,在维持细胞几何形状的复杂支撑体系中,他们也是关键的构成模块。甚至,通过互补形状,蛋白质可以在细胞内和细胞之间通过互相联系来传递信息。

Biologists say that when it comes to proteins, "structure determines function." Like any precision machine, a protein can perform its job only when it is in just the right shape and has exactly the right electrochemical properties. When a protein is even slightly misshapen, its efficiency drops immensely or, worse, it actually becomes dangerous.
生物学家说,对于蛋白质来说“结构决定作用”。就像任何精密的机器,蛋白质只有在相应的形状下和具有相应的电化学性质时才能执行它的工作。蛋白质只要有稍许的畸形,它的效率就会明显下降,甚至更糟:变得危险。

But no protein is born in its final shape, like the Greek goddess Athena springing full-grown from Zeus' head. Far from it — each protein begins its life as a linear assembly of amino acids, as many as hundreds or even tens of thousands of units long. Yet, in some mysterious way, a protein folds into its correct structure within a fraction of a second after its creation.
但是,蛋白质生来都不是最终形态,就像希腊女神雅典娜如雨后春笋般地从宙斯脑袋上长出来一样。甚至远非如此——每一个蛋白质作为氨基酸的组装线开始它的生命,它能装配成千上万个氨基酸单元。并且,通过某些神秘的方法,蛋白质可以在出生几分之一秒内就折叠成正确的结构。

In the frenzied broth that is a cell's innards, however, proteins often get misshapen. Or they may be malformed at the outset — for example when, at any given position along the string, the correct amino acid (there are 20 different candidate amino acids, each with its own electrical-charge distribution and water-seeking or water-avoiding propensity) is replaced by one of the other 19 amino acids most typically as a result of a mutation in the gene whose instructions specify that protein's exact sequence.
细胞的内部结构就像疯狂的肉汤这句话求订证,总之,蛋白质经常会发育畸形。也许它们从一开始就是畸形的,例如,在一串氨基酸上任何一个给定的位置,正确的氨基酸(有20种不同的候选氨基酸,每一种都有它自己的电荷分布以及喜水或厌水的性质)会被其他19种中的1种取代,会造成这种结果的典型例子就是确定蛋白质正确序列的基因发生了突变。

In practice, biologists frequently don't know which proteins do which jobs, or how they do them. One way to find out is to learn how a protein is shaped and what makes its shape change and in what way, because a protein's structure determines its function. Proteins are so tiny that this is much easier said than done. Using radiological approaches such as X-ray crystallography allows scientists to "see" much better at this nanoscale, to reveal the structure — and a hint as to the probable workings — of important, but structurally complicated proteins.
在实践中,生物学家们往往没法知道哪一个蛋白质对应哪一项工作,或者它们是如何完成那项工作的。解决这个问题的一个方法就是去研究一个蛋白质的结构是如何形成的、哪些因素会改变它的结构以及通过何种途径改变的,因为蛋白质的结构决定了它的功能。我们说起来简单但做起来却很困难,因为蛋白质实在太小了。通过使用例如X射线结晶之类的手段可以让科学家们在这样的纳米级别“看”得更清楚,以展示蛋白质的结构——更重要的是结构中暗含了其可能的运作方式——但是结构性的东西才是蛋白质最复杂的地方。

But it is often the case that a protein can't be purified sufficiently, or lacks the biochemical characteristics, to be amenable to the finicky procedure that is X-ray crystallography. On the other hand, it is usually fairly easy to determine any protein's linear amino-acid sequence, either by direct analysis or by studying the gene dictating that sequence. The computer-simulation and molecular modeling techniques pioneered by Levitt reproduce the structural, thermodynamic and dynamic properties of a macromolecule in as accurate a way as possible, profoundly expanding the range of protein structures that can be discerned and unlocking the door to studying these proteins' function. Levitt's methods also permit prediction of the steps via which a protein molecule folds from its initial linear condition to assume its final, working form.
但是往往在蛋白质没有充分净化的情况下,或者缺少生物化学性质时,很难利用X射线结晶这种对材料要求比较苛刻的方法来研究。另一方面,不管是通过直接分析还是研究基因的方法,都可以很容易地确定特定蛋白质的氨基酸序列。通过莱维特(Levitt)博士开创的计算机模拟和分子建模技术,可以尽可能准确地模拟大分子尺度下的蛋白质构造以及其热力学和动力学性质,这种大幅地放大蛋白质尺度的方法可以让我们从中看到端倪,并打开了研究蛋白质作用的大门。莱维特(Levitt)博士的方法还可以通过蛋白质分子的初始状态和折叠过程来推测其最终形态——工作形态。

The techniques involved in this modeling start with simple but realistic expressions for the interactions between atoms and classical laws of motion. They are applicable not only to proteins but to other complex biomolecules such as DNA and RNA. Levitt's studies of DNA double-helix segments in solution preserve its classical double helix while still showing a wide range of possible motions on the part of various stretches of that helix. This is significance, as the "reading" of gene's instructions by the massive cellular machines that are crucial to protein production, as well as DNA replication, requires that the helix be flexible enough to accommodate their intrusions.
这种建模运用到的技术很简单,但却能真实地反映出原子之间的相互作用和经典运动定律。这项技术不仅可以运用在蛋白质研究中,还可以运用于其他复杂的生物分子研究中,比如DNA和RNA。莱维特(Levitt)博士关于DNA双螺旋片段的研究,在维持其经典的双螺旋结构的同时,仍然能在很大程度上展示该螺旋在各个延伸部分上的运动。它的意义在于,因为大量的细胞机器“识别”基因的指令对蛋白质的生产是很关键的,同样对于DNA的复制,需要螺旋具有足够的延展性来容纳它们的插入。此段能力不济,求校正!)

Using both molecular dynamics simulation and molecular modeling, Levitt and his associates have simulated the measurable static and dynamic properties of several different proteins surrounded by thousands of water molecules, at different temperatures. They have also used sophisticated computer programming and molecular-modeling methods to study, among other things, the immensely variable "tips" of antibody molecules. They are working on the question of how a single amino-acid change can destabilize a protein.
通过分子动态模拟和分子建模,莱维特(Levitt)博士和他的同事在不同温度下模拟了多种蛋白质在水分子包围下可测定的静态性质与动态性质。他们还使用复杂的计算程序和分子建模的方法来研究诸如抗体分子上的大量变化多端的特性。目前,他们正在研究一个氨基酸的改变是如何动摇整个蛋白质的稳定性的。

In early 2013, Levitt's group at Stanford employed novel methods to figure out the structure of an important class of molecules in a way that explains their function in greater detail that known before. The molecules under study were the most complex of a larger group of proteins called chaperonins, key "helper" proteins within all cells that act as midwives and monkey-wrenches to tease nascent or damaged proteins into their proper active shapes.
在2013年初,莱维特(Levitt)博士在斯坦福的研究小组启用了一种新颖的方法来研究一类重要的分子结构,在很大程度上能让科学家比以往更详尽地了解它们的功能。目前正在研究的分子是极其复杂的,被称为伴侣蛋白,并且在蛋白质中占了很大比重。这种蛋白质是关键的“帮手”,它们在所有细胞内充当着助产士和活动扳手的角色——把新生的或者是损坏的蛋白质梳理成合适的能发挥作用的形态。


抱歉,接了活才发现困难重重,要麻烦校对多费心了……

点评

很给力!: 5.0 辛苦啦~~: 5.0
这两个月又是工作又是各种考试备考,把这个校对耽误啦,哈哈,这几天仔细看看。  发表于 2014-4-17 09:24
很给力!: 5 辛苦啦~~: 5
辛苦啦,这几天我仔细看看 :)  发表于 2014-2-26 16:16

评分

参与人数 1维基拼图 +17 收起 理由
昂宿星团人 + 17 诶哟,来晚了哈,不好意思。。辛苦啦!.

查看全部评分

发表于 2014-7-25 11:16:06 | 显示全部楼层
vincentdark 发表于 2014-2-24 19:18
@昂宿星团人 @碧城仙  翻译完毕,请校对!

The science behind Michael Levitt's Nobel Prize

好久没干活了,这两天没事,找篇稍微短点的校对一下子~碧大就排个二校吧~哈哈
在校对的基础上做了少许润色,若有不当,敬请指出别客气。。
标红的不全是有错,只要是修改过的在原译文里都标为红色,对应校对里的蓝色,没有改的就是没意见
@vincentdark

The science behind Michael Levitt'sNobel Prize
Michael Levitt 的诺贝尔奖背后的科学

Modeling canpredict a protein's molecular structure based on its amino-acid sequence.
通过基于氨基酸序列的模拟,可以预测蛋白质的分子结构

By Bruce Goldman


Michael Levitt, PhD, has dramatically advanced the field of structural biologyby developing sophisticated computer algorithms to build models of complexbiological molecules.
迈克尔·莱维特(Michael Levitt)博士通过开发尖端的计算机算法来构建复杂的生物学分子模型,在结构生物学领域取得了显著成果。

Applying known three-dimensional structures and basic principles of physicalchemistry as complementary guidelines, this modeling can, for example, predicta protein's molecular structure on the basis of that protein's amino-acidsequence.
以已知的三维结构和物理化学的基本原理为基准,这种模拟可以,例如:通过蛋白质的氨基酸序列来预测蛋白质的分子结构。
以已知的三维结构和物理化学的基本原理为基准,这种模型可以通过蛋白质的氨基酸序列来预测蛋白质的分子结构。

Proteins are long concatenations of chemical subunits called amino acids, and theirjob description is manifold. First, they do the vast bulk of every cell'sphysical work by catalyzing chemical reactions and shipping smaller moleculesfrom place to place. They also are the key building blocks of the complexskeletons and scaffolds that maintain each cell's geometry. Further, a proteincan serve as a messenger both within and between cells by contacting anotherprotein with a complementary shape.
蛋白质是由一串很长的被称为氨基酸的化学亚基组成的,这些氨基酸的作用是多方面的。首先,他们承担了每个细胞内的大部分体力活:催化化学反应和搬运较小的分子。其次,在维持细胞几何形状的复杂支撑体系中,他们也是关键的构成模块。甚至,通过互补形状,蛋白质可以在细胞内和细胞之间通过互相联系来传递信息。
蛋白质是由连接成长串的氨基酸构成的,这些氨基酸的作用是多方面的。首先,他们承担了每个细胞内的大部分体力活:催化化学反应和搬运较小的分子。其次,在维持细胞几何形状的复杂支撑体系中,他们也是关键的构成模块。甚至,通过互补形状,蛋白质可以在细胞内和细胞之间通过互相联系来传递信息。


Biologists say that when it comes to proteins, "structure determinesfunction." Like any precision machine, a protein can perform its job onlywhen it is in just the right shape and has exactly the right electrochemicalproperties. When a protein is even slightly misshapen, its efficiency dropsimmensely or, worse, it actually becomes dangerous.
生物学家说,对于蛋白质来说“结构决定作用”。就像任何精密的机器,蛋白质只有在相应的形状下和具有相应的电化学性质时才能执行它的工作。蛋白质只要有稍许的畸形,它的效率就会明显下降,甚至更糟:变得危险。
生物学家说,对于蛋白质来说,“结构决定作用”。像精密的机器一样,蛋白质只有在具有特定的形状和相应的电化学性质时才能执行它的工作。蛋白质只要有稍许的畸形,它的效率就会明显下降,甚至变得危险。

But no protein is born in its final shape, like the Greek goddess Athenaspringing full-grown from Zeus' head. Far from it — each protein begins itslife as a linear assembly of amino acids, as many as hundreds or even tens ofthousands of units long. Yet, in some mysterious way, a protein folds into itscorrect structure within a fraction of a second after its creation.
但是,蛋白质生来都不是最终形态,就像希腊女神雅典娜如雨后春笋般地从宙斯脑袋上长出来一样。甚至远非如此——每一个蛋白质作为氨基酸的组装线开始它的生命,它能装配成千上万个氨基酸单元。并且,通过某些神秘的方法,蛋白质可以在出生几分之一秒内就折叠成正确的结构。
但是,蛋白质不像雅典娜似的,从宙斯的脑袋里蹦出来的时候什么样,后来就是什么样。它们刚被合成出来时并不具有产生功能所必须的形状,或者说,与其最终的形状相去甚远:蛋白质最初的形态,仅仅是氨基酸首尾相接形成的分子链。这些分子链可能由上千、甚至上万个氨基酸构成,然而神秘的是蛋白质却可以在被合成后几分之一秒内就折叠成正确的结构。
*关于雅典娜的比喻大概是来自于传说中雅典娜的“出生”:
(来自度娘百科)...此后宙斯得了严重的头痛症神人之父宙斯只好要求火神赫淮斯托斯打开他的头颅(一说为普罗米修斯)[6] ,火神那样做了。令奥林波斯山诸神惊讶的是:一位体态婀娜、披坚执锐的美丽的女神从裂开的头颅中跳了出来,光彩照人,仪态万方。
**这段的翻译部分地按个人的理解yy了一下,有误的地方还请懂行的同志指出。。
***yy是意译,莫想多。。


In the frenzied broth that is a cell's innards, however, proteins often get misshapen.Or they may be malformed at the outset — for example when, at any givenposition along the string, the correct amino acid (there are 20 differentcandidate amino acids, each with its own electrical-charge distribution andwater-seeking or water-avoiding propensity) is replaced by one of the other 19amino acids most typically as a result of a mutation in the gene whoseinstructions specify that protein's exact sequence.
细胞的内部结构就像疯狂的肉汤(这句话求订证),总之,蛋白质经常会发育畸形。也许它们从一开始就是畸形的,例如,在一串氨基酸上任何一个给定的位置,正确的氨基酸(有20种不同的候选氨基酸,每一种都有它自己的电荷分布以及喜水或厌水的性质)会被其他19种中的1种取代,会造成这种结果的典型例子就是确定蛋白质正确序列的基因发生了突变。
然而,在乱得像一锅粥细胞内部(个人想法),蛋白质经常会发育畸形、或是从一开始就是畸形的。例如,一串氨基酸的任一位置上,正确的氨基酸(有20种不同的候选氨基酸,每一种都有它自己的电荷分布以及喜水或厌水的性质)被另外19种中的1种取代,会造成这种结果的典型原因就是指导蛋白质以正确顺序合成的基因发生了突变。

In practice, biologists frequently don't know which proteins do which jobs, orhow they do them. One way to find out is to learn how a protein is shaped andwhat makes its shape change and in what way, because a protein's structuredetermines its function. Proteins are so tiny that this is much easier saidthan done. Using radiological approaches such as X-ray crystallography allowsscientists to "see" much better at this nanoscale, to reveal thestructure — and a hint as to the probable workings — of important, butstructurally complicated proteins.
在实践中,生物学家们往往没法知道哪一个蛋白质对应哪一项工作,或者它们是如何完成那项工作的。解决这个问题的一个方法就是去研究一个蛋白质的结构是如何形成的、哪些因素会改变它的结构以及通过何种途径改变的,因为蛋白质的结构决定了它的功能。我们说起来简单但做起来却很困难,因为蛋白质实在太小了。通过使用例如X射线结晶之类的手段可以让科学家们在这样的纳米级别“看”得更清楚,以展示蛋白质的结构——更重要的是结构中暗含了其可能的运作方式——但是结构性的东西才是蛋白质最复杂的地方。
在实践中,生物学家们往往没法知道哪一个蛋白质对应哪一项工作,或者它们是如何完成那项工作的。解决这个问题的一个方法就是去研究一个蛋白质的结构是如何形成的、哪些因素会改变它的结构以及通过何种途径改变的,因为蛋白质的结构决定了它的功能。我们说起来简单但做起来却很困难,因为蛋白质实在太小了。科学家们可以使用例如X衍射晶体分析法之类的手段在蛋白质所处的纳米尺度上“看”得更清楚,藉此得到这些重要而复杂的蛋白质结构,以及能证明它们功能的蛛丝马迹。

But it is often the case that a protein can't be purified sufficiently, orlacks the biochemical characteristics, to be amenable to the finicky procedurethat is X-ray crystallography. On the other hand, it is usually fairly easy todetermine any protein's linear amino-acid sequence, either by direct analysisor by studying the gene dictating that sequence. The computer-simulation andmolecular modeling techniques pioneered by Levitt reproduce the structural,thermodynamic and dynamic properties of a macromolecule in as accurate a way aspossible, profoundly expanding the range of protein structures that can bediscerned and unlocking the door to studying these proteins' function. Levitt'smethods also permit prediction of the steps via which a protein molecule foldsfrom its initial linear condition to assume its final, working form.
但是往往在蛋白质没有充分净化的情况下,或者缺少生物化学性质时,很难利用X射线结晶这种对材料要求比较苛刻的方法来研究。另一方面,不管是通过直接分析还是研究基因的方法,都可以很容易地确定特定蛋白质的氨基酸序列。通过莱维特(Levitt)博士开创的计算机模拟和分子建模技术,可以尽可能准确地模拟大分子尺度下的蛋白质构造以及其热力学和动力学性质,这种大幅地放大蛋白质尺度的方法可以让我们从中看到端倪,并打开了研究蛋白质作用的大门。莱维特(Levitt)博士的方法还可以通过蛋白质分子的初始状态和折叠过程来推测其最终形态——工作形态。
但是往往在蛋白质无法充分提纯的情况下,或者缺少生物化学性质时,很难利用X射线结晶这种对材料要求比较苛刻的方法来研究。另一方面,不管是通过直接分析还是研究基因的方法,都可以很容易地确定特定蛋白质的氨基酸序列。通过莱维特(Levitt)博士开创的计算机模拟和分子建模技术,可以尽可能准确地模拟大分子尺度下的蛋白质构造以及其热力学和动力学性质,这大大增加了我们可以辨别其结构的蛋白质的种类,并打开了研究蛋白质功能的大门。莱维特(Levitt)博士的方法还可以通过蛋白质分子的初始形态和工作形态来预测折叠过程中的步骤。
*最后一句不太确定,总之先写上了个人看法



The techniques involved in this modeling start with simple but realisticexpressions for the interactions between atoms and classical laws of motion.They are applicable not only to proteins but to other complex biomolecules suchas DNA and RNA. Levitt's studies of DNA double-helix segments in solutionpreserve its classical double helix while still showing a wide range ofpossible motions on the part of various stretches of that helix. This issignificance, as the "reading" of gene's instructions by the massivecellular machines that are crucial to protein production, as well as DNAreplication, requires that the helix be flexible enough to accommodate theirintrusions.
这种建模运用到的技术很简单,但却能真实地反映出原子之间的相互作用和经典运动定律。这项技术不仅可以运用在蛋白质研究中,还可以运用于其他复杂的生物分子研究中,比如DNA和RNA。莱维特(Levitt)博士关于DNA双螺旋片段的研究,在维持其经典的双螺旋结构的同时,仍然能在很大程度上展示该螺旋在各个延伸部分上的运动。它的意义在于,因为大量的细胞机器“识别”基因的指令对蛋白质的生产是很关键的,同样对于DNA的复制,需要螺旋具有足够的延展性来容纳它们的插入。(此段能力不济,求校正!)
*看跪了,同求这段       @fwjmath    
**找到了(大概是)文中所指的研究的论文,供参考:
http://csb.stanford.edu/levitt/Levitt_PNAS78_DNA_turns.pdf
参照f大和碧大的意见,作修改如下:
这种建模运用到的技术很简单,但却能真实地反映出原子之间的相互作用和经典运动定律。这项技术不仅可以运用在蛋白质研究中,还可以运用于其他复杂的生物分子研究中,比如DNA和RNA。莱维特(Levitt)博士关于DNA双螺旋片段的研究,在维持其经典的双螺旋结构的同时,仍然能展示出很多种可能的运动或者变化。这种特性的意义在于,在大量胞机器对基因中指令进行“识别”的过程中(这对于蛋白质的合成是至关重要的一环),螺旋必须具有足够的延展性才能容它们的插入。对于DNA的复制,这种与特性也有着类似的意义。

Using both molecular dynamics simulation and molecular modeling, Levitt and hisassociates have simulated the measurable static and dynamic properties ofseveral different proteins surrounded by thousands of water molecules, atdifferent temperatures. They have also used sophisticated computer programmingand molecular-modeling methods to study, among other things, the immenselyvariable "tips" of antibody molecules. They are working on thequestion of how a single amino-acid change can destabilize a protein.
通过分子动态模拟和分子建模,莱维特(Levitt)博士和他的同事在不同温度下模拟了多种蛋白质在水分子包围下可测定的静态性质与动态性质。他们还使用复杂的计算程序和分子建模的方法来研究诸如抗体分子上的大量变化多端的特性。目前,他们正在研究一个氨基酸的改变是如何动摇整个蛋白质的稳定性的。

In early 2013, Levitt's group at Stanford employed novel methods to figure outthe structure of an important class of molecules in a way that explains theirfunction in greater detail that known before. The molecules under study werethe most complex of a larger group of proteins called chaperonins, key"helper" proteins within all cells that act as midwives andmonkey-wrenches to tease nascent or damaged proteins into their proper activeshapes.
在2013年初,莱维特(Levitt)博士在斯坦福的研究小组启用了一种新颖的方法来研究一类重要的分子结构,在很大程度上能让科学家比以往更详尽地了解它们的功能。目前正在研究的分子是极其复杂的,被称为伴侣蛋白,并且在蛋白质中占了很大比重。这种蛋白质是关键的“帮手”,它们在所有细胞内充当着助产士和活动扳手的角色——把新生的或者是损坏的蛋白质梳理成合适的能发挥作用的形态。

点评

很给力!: 5.0 辛苦啦~~: 5.0
很给力!: 5 辛苦啦~~: 5
原文比喻有点多,技术性强,也确实比较绕口 :) 昂宿星团人,多叫些外星朋友来活跃活跃翻译区吧 O(∩_∩)O  发表于 2014-7-26 12:12
发表于 2014-7-25 17:03:07 | 显示全部楼层
我觉得那一段没啥问题。你们觉得哪里不好懂?我可以尝试解释一下。
发表于 2014-7-25 19:43:17 | 显示全部楼层
fwjmath 发表于 2014-7-25 17:03
我觉得那一段没啥问题。你们觉得哪里不好懂?我可以尝试解释一下。

我是这句没看懂:Levitt's studies of DNA double-helix segments in solution preserve its classical double helix while still showing a wide range of possible motions on the part of various stretches of that helix.
没觉着vincentdark翻译的有问题,但既然他自己没自信,而且这破句子太长了我自己又翻译不出来,所以。。
发表于 2014-7-25 21:50:38 | 显示全部楼层
昂宿星团人 发表于 2014-7-25 19:43
我是这句没看懂:Levitt's studies of DNA double-helix segments in solution preserve its classical d ...

Levitt的方法貌似是大尺度上用比较粗略但是快的方法,小尺度上用比较精确但是慢的方法,所以可以预期的是大尺度结构——比如说双螺旋——的模拟结果仍然是双螺旋,但在细节上由于溶液或者伴侣蛋白之类的影响会有所变化,大概就是这个意思吧……
发表于 2014-7-26 07:50:50 | 显示全部楼层
fwjmath 发表于 2014-7-25 21:50
Levitt的方法貌似是大尺度上用比较粗略但是快的方法,小尺度上用比较精确但是慢的方法,所以可以预期的是 ...

唔嗯。。那就是说,这句话是对上一句提到的“They are applicable not only to proteins but to other complex biomolecules such as DNA and RNA.”这点的举例说明咯?
发表于 2014-7-26 07:52:55 | 显示全部楼层
昂宿星团人 发表于 2014-7-26 07:50
唔嗯。。那就是说,这句话是对上一句提到的“They are applicable not only to proteins but to other co ...

嗯,我觉得可以这样理解吧。

点评

很给力!: 5.0 辛苦啦~~: 5.0
精辟!: 5.0
很给力!: 5 辛苦啦~~: 5 精辟!: 5
了了!根据您的解释在校对中做了修改,多谢指点~  发表于 2014-7-27 11:19
发表于 2014-7-26 11:05:43 | 显示全部楼层
fwjmath 发表于 2014-7-26 07:52
嗯,我觉得可以这样理解吧。

哦,那么能否解释一下后半句的意思呢:
while still showing a wide range of possible motions on the part of various stretches of that helix
感觉这里的内容即和上句无关,又不是十分通顺。。

点评

就是展示出很多种可能的运动或者变化,因为DNA分子的活动还是可以很复杂的,大体上是双螺旋,但是可以有比较复杂的二级结构  发表于 2014-7-26 23:26
感觉不是“在很大程度上展示”,而是能“展示出很大范围内”。  发表于 2014-7-26 12:56
发表于 2014-7-26 15:05:16 | 显示全部楼层
碧城仙感觉不是“在很大程度上展示”,而是能“展示出很大范围内”。

同意~话说对于这句话的整体,您是怎么理解的?
您需要登录后才可以回帖 登录 | 新注册用户

本版积分规则

论坛官方淘宝店开业啦~
欢迎大家多多支持基金会~

小黑屋|手机版|Archiver|中国分布式计算总站 ( 沪ICP备05042587号 )

GMT+8, 2021-7-31 14:07

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表