“Astropulse”的版本间差异

来自中国分布式计算总站
跳转到导航 跳转到搜索
(未显示3个用户的34个中间版本)
第1行: 第1行:
<big>'''Astropulse'''</big>
+
{{Subproject
 +
| name =Astropulse
 +
| mainproject =[[SETI@home]]
 +
| logo =Astropulse.jpg
 +
| screenshot =Astropulse_screenshot.jpg
 +
| caption =Astropulse 运行时的屏保图形
 +
| developer =加利福尼亚州大学伯克利分校 [[文件:United_States.gif]]
 +
| released =2008年7月
 +
| app ={{app/Windows}}{{app/Linux}}{{app/Mac}}
 +
| genre ={{genre/天文学}}、{{genre/物理学}}
 +
| status =运行中/开放注册
 +
| website =http://setiathome.berkeley.edu/
 +
}}
 +
[[Astropulse]] 是一个使全世界的志愿者能够使用自己的电脑出一分力参与研究黑洞、脉冲星及外星生命的分布式计算项目,也是 [[SETI@home]] 项目的一部分。志愿者的电脑可以通过 [[BOINC]] 来参与该计划。
  
 +
=='''开发过程'''==
 +
2002年至2008年的六年间,[[Astropulse]] 从一个测试的实验项目发展成为一个正式的计划。2008年7月,这个计划也被集成入了 [[SETI@Home]] 的研究中,从而使 [[SETI@Home]] 的参与者所构成的大型网络能够对其他种类的天文信号有所贡献,而 [[Astropulse]] 计划本身也能够给寻找地外文明提供另外的一个途径,形成互补。
 +
*第一,计划的支持者认为,它有可能识别出某些不同于原先 SETI@Home 算法的其他类型信号;
 +
*第二,支持者相信它可以为总体研究计划提供一个次要的但有可能相当可靠的结果,从而为 SETI@Home 创造附加的支持。
 +
计划的未来是依靠着 SETI@Home 的长期资金支持。
  
条目正在翻译,Astropulse 的相关介绍可以先看[[Astropulse: A Fresh Look at the Skies in Search of E.T.]]
+
[[Astropulse]] 的最终开发过程是经过两次的努力的。第一步是撰写该项目中一个能够成功识别目标脉冲信号的C++核心。在完成这个项目后,该团队创造了一个试验用的数据库;这个数据库能够成功的寻找到一些潜在的脉冲,确认有能够成功识别信号的能力。
  
 +
{{JoinBoincProject
 +
|Project=SETI@home
 +
|URL=http://setiathome.berkeley.edu/}}
 +
加入 SETI@home 后,默认是同时勾选 [[SETI@home:Multibeam|Multibeam]] 和 Astropulse 的任务。你可以根据需要在[http://setiathome.berkeley.edu/prefs.php?subset=project 项目网站的参数设置页面]选择指定的任务。
  
[[Astropulse]] is a distributed computing project that uses volunteers across the globe to lend their unused computing power to search for primordial black holes, pulsars, and ETI. Volunteer resources are harnessed through Berkeley Open Infrastructure for Network Computing (BOINC) platform. In 1999, the Space Sciences Laboratory launched Seti@Home, which would rest on massively parallel computation on desktop computers scattered around the world. SETI@home utilizes recorded data from the Arecibo radio telescope and searches for narrow bandwidth radio signals from space, signifying the presence of extraterrestrial technology. It was soon recognized that this same data might be scoured for other signals of value to the astronomy and physics community.
 
  
Astropluse 是一个分布式项目,该项目利用全球志愿者他们的计算机闲置计算能力来寻找原始黑洞、脉冲星、和地位文明。志愿者的计算资源是通过 [[BOINC]] 平台来提供。在1999年,空间科学实验室启动了 [[SETI@home]] 项目,这将大规模的并行计算分散到世界各地的桌面计算机进行。SETI@home 利用从[[阿雷西博天文望远镜]]获得的数据来寻找太空中的窄带无线电信号,探索地外文明。很快的,这些分析的数据被认为可能是对天文学和物理社区的另外一种有价值的信号。
+
=='''科学研究'''==
 +
[[Astropulse]] 会寻找著单一的脉冲及有规则重复的脉冲。这个实验表示著 SETI@Home 有一个新的发展、新的计划、新的策略,这种研究方案是基于毫秒级的脉冲,而不是长脉冲或窄带信号。它们可能会覆盖到脉冲星及找到原生黑洞,因为两者也会发出一些短脉冲或阔带信号。[[Astropulse]] 的核心运算法则最基本的用途是相干消色散,是用来寻找无线电波信号,亦即是这个计划运算的工作。关于 [[Astropulse]] 的详细研究内容,请参见条目 [[Astropulse:科学原理|Astropulse 的科学原理]]
  
  
==Development==
+
=='''优化程序'''==
For about 6 years, Astropulse existed in an experimental Beta testing phase not available to the general community. In July of 2008, Astropulse was integrated into SETI@home, so that the massive network of SETI participants could also contribute to the search for other astronomical signals of value. Astropulse also makes contributions to the search for ET. First, project proponents believe it may identify a different type of ET signal not identified by the original Seti@Home algorithm. Second, proponents believe it may create additional support for SETI by providing a second possible concrete result from the overall search project.
+
Astropulse 有第三方提供的优化程序,对比官方程序在计算效率上有非常大的提升,使用时需要 CPU 指令集的支持。同时优化程序为节省计算资源,不提供图形显示(屏保)功能。另外 GPU 也可以利用优化程序进行加速。
 
 
 
 
Astropulse searches for both single pulses and regularly repeating pulses. This experiment represents a new strategy for SETI, postulating microsecond timescale pulses as opposed to longer pulses or narrowband signals. They may also discover pulsars and exploding primordial black holes, both of which would emit brief wideband pulses. The primary purpose of the core Astropulse algorithm is coherent de-dispersion [1] of the microsecond radio pulses for which Astropulse is searching. Dispersion of a signal occurs as the pulse passes through the interstellar medium (ISM) plasma, because the high frequency radiation goes slightly faster than the lower frequency radiation. [2] Thus, the signal arrives at the radio-telescope dispersed depending upon the amount of ISM plasma between the Earth and the source of the pulse. Dedispersion is computationally intensive, thus lending itself to the distributed computing model.
 
 
 
 
 
Astropulse utilizes the distributed computing power of SETI@home, delegating computational sub-tasks to hundreds of thousands of volunteers' computers, to gain advantages in sensitivity and time resolution over previous surveys. Wideband pulses would be "chirped" by passage through the interstellar medium; that is, high frequencies would arrive earlier and lower frequencies would arrive later. Thus, for pulses with wideband frequency content, dispersion hints at a signal's extraterrestrial origin. It searches for pulses with dispersion measures ranging from 50 pc cm-3 to 800 pc cm-3 (chirp rates of 7000 Hz to 400 Hz per microsecond) allowing detection of sources almost anywhere within the Milky Way.
 
 
 
 
 
Final development of astropulse has been a two-part endeavor. The first step was to complete the astropulse C++ core that can identify successfully a target pulse. Upon completion of that program, the team created a trial dataset that contained a hidden pulse, which the completed program successfully found, thus confirming the ability of the astropulse C++ core to successfully identify target pulses.
 
 
 
 
 
The BOINC idea is to divide (split) large blocks of data into smaller units, each of which can be distributed to individual participating work stations. To this end, the project then began to embed the Astropulse C++ core into the Seti Beta client and began to distribute real data, split into astropulse work units, to a team of beta testers. The challenge has been to assure that the astropulse core will work seemlessly on a broad array of operating systems.
 
 
 
 
 
Project proponents believe that Astropulse will either detect exploding black holes, or establish a maximum rate of 5 x 10-14 pc-3 yr-1, a factor of 104 better than any previous survey. [3] The future of the project depends on extended funding to SETI@home.
 
 
 
 
 
==Potential Pulse Finds==
 
===Primordial Black Holes===
 
"According to the Big Bang Model (also called the Standard Model), during the first few moments after the Big Bang, pressure and temperature were extremely great. Under these conditions, simple fluctuations in the density of matter may have resulted in local regions dense enough to create black holes. Although most regions of high density would be quickly dispersed by the expansion of the universe, a primordial black hole would be stable, persisting to the present." Wikipedia Primordial Black Holes One goal of Astropulse is to detect postulated mini black holes that might be evaporating due to "Hawking radiation". Such mini black holes [4] are postulated to have been created during the big bang, unlike currently known black holes. Martin Rees has theorized that a black hole, exploding via Hawking radiation, might produce a signal that's detectable in the radio. The Astropulse project hopes that this evaporation would produce radio waves that Astropulse can detect. "The evaporation wouldn't create radio waves directly. Instead, it would create an expanding fireball of high energy gamma rays and particles. This fireball would interact with the surrounding magnetic field, pushing it out and generating radio waves."
 
 
 
 
 
===RRAT's===
 
Rotating radio transients (RRATs) are a type of neutron stars discovered in 2006 by a team led by Maura McLaughlin from the Jodrell Bank Observatory at the University of Manchester in the UK. RRAT's are believed to produce radio emissions which are are very difficult to locate, because of their transient nature. [6] Early efforts have been able to detecting radio emissions, sometimes called an RRAT flash, [7], for less than one second a day, and like other single burst signals, one must take great care to distinguish them from terrestrial radio interference. Distributing computing and the astropulse algorithm may thus lend itself to further detection of RRAT's.
 
 
 
 
 
===Extragalactic Pulses===
 
D. R. Lorimer and others analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud. They reported that the burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. In a recent paper, they argue that current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. The fact that no further bursts were seen in 90 hours of additional observations implies that it was a singular event such as a supernova or coalescence of relativistic objects. [8] It is suggested that Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes. Radio pulsar surveys such as Astropulse-Seti@Home offer one of the few opportunities to monitor the radio sky for impulsive burst-like events with millisecond durations. [9]. Because of the isolated nature of the observed phenomenon, the nature of the source remains speculative. Possibilities include a black hole-neutron star collision, a neutron star-neutron star collision, a black hole-black hole collision, or some phenomenon not yet considered.
 
 
 
 
 
===ET===
 
Previous searches by Seti@Home have looked for extraterrestrial communications in the form of narrow-band signals, analogous to our own radio stations. The Astropulse project argues that since we know nothing about how ET might communicate, this might be a bit closed-minded. Thus, the Astropulse survey can be viewed as supplementing the narrow-band Seti@Home survey as a bi-product of the search for physical phenomena.
 
 
 
 
 
===Undiscovered Phenomena===
 
Radio astronomers have made some exciting discoveries. RF radiation from outer space was first discovered by Karl G. Jansky (1905-1950) who worked as a radio engineer at the Bell Telephone Laboratories to studying radio frequency interference from thunderstorms for Bell Laboratories. He found “ . . . a steady hiss type static of unknown origin,” which eventually he concluded had an extraterrestrial origin. Pulsars (rotating neutron stars) and quasars (dense central cores of extremely distant galaxies) were both discovered by radio astronomers. In 2003 astronomers using the Parkes radio telescope discovered two pulsars orbiting each other, the first such system known. Explaining their recent discovery of a powerful bursting radio source,[10] NRL astronomer Dr. Joseph Lazio stated, “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths, very little has been done to look for radio bursts, which are often easier for astronomical objects to produce.” The use of coherent dedispersion algorithms and the computing power provided by the SETI network may lead to discovery of previously undiscovered phenomena.
 
 
 
 
 
==Astronomy in the Schools==
 
Astropulse and its older partner, SETI@Home, offers a concrete way for secondary school science teachers to involve their students with astronomy and computing in a concrete way. A number of schools maintain distributed computing class projects.
 
  
 +
*[[SETI@home:优化程序]]
 +
*[http://www.equn.com/forum/thread-23838-1-1.html AstroPulse ATI GPU/CPU 混合优化程序]
  
 
==相关链接==
 
==相关链接==
*[[SETI]]
 
*[[SETI@home]]
 
*[[SETI@home/AstroPulse Beta]]
 
 
*[http://en.wikipedia.org/wiki/Astropulse Astropulse]
 
*[http://en.wikipedia.org/wiki/Astropulse Astropulse]
 
*[http://setiathome.berkeley.edu/beta/ SETI@home/AstroPulse Beta]
 
*[http://setiathome.berkeley.edu/beta/ SETI@home/AstroPulse Beta]
  
[[Category:分布式计算项目]][[Category:物理化学类项目]][[Category:BOINC平台上的项目]][[Category:本站推荐项目]][[Category:SETI@home]][[Category:文献翻译]]
+
 
 +
{{BOINC topics}}

2013年7月13日 (六) 03:50的版本

Astropulse
Astropulse logo
Astropulse logo
Astropulse 运行时的屏保图形
Astropulse 运行时的屏保图形
SETI@home 的子项目
开发者 加利福尼亚州大学伯克利分校 United States.gif
版本历史 2008年7月
计算程序 WindowsLinuxMac OS X
项目类别 天文学物理学
项目状态 运行中/开放注册
官方网址 Astropulse

Astropulse 是一个使全世界的志愿者能够使用自己的电脑出一分力参与研究黑洞、脉冲星及外星生命的分布式计算项目,也是 SETI@home 项目的一部分。志愿者的电脑可以通过 BOINC 来参与该计划。

开发过程

2002年至2008年的六年间,Astropulse 从一个测试的实验项目发展成为一个正式的计划。2008年7月,这个计划也被集成入了 SETI@Home 的研究中,从而使 SETI@Home 的参与者所构成的大型网络能够对其他种类的天文信号有所贡献,而 Astropulse 计划本身也能够给寻找地外文明提供另外的一个途径,形成互补。

  • 第一,计划的支持者认为,它有可能识别出某些不同于原先 SETI@Home 算法的其他类型信号;
  • 第二,支持者相信它可以为总体研究计划提供一个次要的但有可能相当可靠的结果,从而为 SETI@Home 创造附加的支持。

计划的未来是依靠着 SETI@Home 的长期资金支持。

Astropulse 的最终开发过程是经过两次的努力的。第一步是撰写该项目中一个能够成功识别目标脉冲信号的C++核心。在完成这个项目后,该团队创造了一个试验用的数据库;这个数据库能够成功的寻找到一些潜在的脉冲,确认有能够成功识别信号的能力。


如何加入项目

该项目基于 BOINC 平台,简要的加入步骤如下(已完成的步骤可直接跳过):

  1. 下载并安装 BOINC 的客户端软件(官方下载页面程序下载
  2. 点击客户端简易视图下的“Add Project”按钮,或高级视图下菜单中的“工具->加入项目”,将显示向导对话框
  3. 点击下一步后在项目列表中找到并单击选中 SETI@home 项目(如未显示该项目,则在编辑框中输入项目网址:http://setiathome.berkeley.edu/ ),然后点击下一步
  4. 输入您可用的电子邮件地址,并设置您在该项目的登录密码(并非您的电子邮件密码)
  5. 再次点击下一步,如项目服务器工作正常(并且有适合自身操作系统的计算程序),即已成功加入项目

更详细的加入方法说明,请访问 BOINC 新手指南BOINC 使用教程

本站推荐您加入 Team China 团队,请访问项目官方网站的 团队检索页面,搜索(Search)并进入 Team China 的团队页面,点击页面中的 Join 并输入用户登录信息即可加入! 加入 SETI@home 后,默认是同时勾选 Multibeam 和 Astropulse 的任务。你可以根据需要在项目网站的参数设置页面选择指定的任务。


科学研究

Astropulse 会寻找著单一的脉冲及有规则重复的脉冲。这个实验表示著 SETI@Home 有一个新的发展、新的计划、新的策略,这种研究方案是基于毫秒级的脉冲,而不是长脉冲或窄带信号。它们可能会覆盖到脉冲星及找到原生黑洞,因为两者也会发出一些短脉冲或阔带信号。Astropulse 的核心运算法则最基本的用途是相干消色散,是用来寻找无线电波信号,亦即是这个计划运算的工作。关于 Astropulse 的详细研究内容,请参见条目 Astropulse 的科学原理


优化程序

Astropulse 有第三方提供的优化程序,对比官方程序在计算效率上有非常大的提升,使用时需要 CPU 指令集的支持。同时优化程序为节省计算资源,不提供图形显示(屏保)功能。另外 GPU 也可以利用优化程序进行加速。

相关链接


Boinc Icon.png伯克利开放式网络计算平台BOINC
· ·
生命科学类项目 GPUGRID · RALPH@home (Alpha内测项目)· RNA World · Rosetta@home · The Lattice Project
地球科学类项目 Climateprediction.net
人工智能类项目 MindModeling@Home
天文学项目 Cosmology@Home · MilkyWay@home· Asteroids@home
物理化学类项目 Einstein@Home · LHC@home · QMC@Home
数学类项目 Collatz Conjecture · NFS@Home · PrimeGrid
密码类项目 Moo! Wrapper
多种应用的项目 World Community Grid · Yoyo@home
与 BOINC 平台相关的项目 BOINC Alpha Test · WUProp@Home
已结束/暂停/合并的项目 Astropulse · Computational Structural Biology · DrugDiscovery@Home ·Pirates@home ·Enigma@Home · CAS@home · ABC@home · AlmereGrid Boinc Grid · APS@Home · AQUA@home · BBC Climate Change Experiment · Biochemical Library · BRaTS@Home · Cels@Home · Chess960@Home · CPDN Beta · DepSpid · DistrRTgen · DNA@home · DNETC@HOME · Docking@Home · Drug@Home · DynaPing · EDGeS@Home · eOn: Long timescale dynamics · Evo@home · Eternity2.fr · FreeHAL@home · Goldbach's Conjecture Project · Ibercivis · Magnetism@home · Mersenne@home · MilestoneRSA · Minecraft@Home · Mopac@home · MFluids@Home · Nano-Hive@home · NQueens Project · Orbit@Home · Open Rendering Environment · POEM@HOME · PicEvolvr.com] · Predictor@home · QuantumFIRE alpha · Ramsey@Home ·RamseyX · Rectilinear Crossing Number · Renderfarm.fi · RSA Lattice Siever (2.0) · Seasonal Attribution Project · SHA-1 Collision Search Graz · SIMAP · SLinCA@Home · Spinhenge@home · Sudoku@vtaiwan · Superlink@Technion · TANPAKU · Virtual Prairie · Virus Respiratorio Sincitial · XtremLab · Zivis · SETI@home · SETI@home/AstroPulse Beta (Beta公测项目)· The Lattice Project· Malariacontrol.net· Quake-Catcher Network Seismic Monitoring· primaboinca · SZTAKI Desktop Grid · WEP-M+2 Project· Charity Engine · BURP · Hydrogen@Home · Leiden Classical
BOINC 相关的工具 BOINCstats BAM! · BOINC Translation Services · BOINC TThrottle