找回密码
 新注册用户
搜索
查看: 20524|回复: 55

cn.boincstats.com - BOINCstats中文版

[复制链接]
发表于 2006-4-2 21:45:26 | 显示全部楼层 |阅读模式
http://cn.boincstats.com/

已经翻译完成!

====================================================================

目前还在翻译过程中,如果大家看到已经翻译的有什么问题,多多反映吧:)

翻译的目录大概有如下一些:
List all Sentences
List all Countries
List all F.A.Q.
List all Poll Questions
List all Poll Answers
List all Project info's
List all AMS info's
List all AMS errors

目前主要翻译了sentences、country和project info,faq还在进行中...poll和ams的还没动

[ Last edited by Youth on 2006-7-7 at 08:28 ]
回复

使用道具 举报

发表于 2006-4-2 22:07:35 | 显示全部楼层
Results of previous POLLs -> 以前的投票结果

这句觉得不是很适合,因为里面是以前的全部投票项目的结果~
所以觉得“(以前/先前)的投票项目结果”,大概是这类的句子比较适合吧~~
回复

使用道具 举报

发表于 2006-4-2 22:57:23 | 显示全部楼层
Youth 斑竹辛苦了!
很多文字可以参考参考繁体版的,这样可以减轻点劳动强度。
回复

使用道具 举报

发表于 2006-4-2 23:27:53 | 显示全部楼层
非常支持!有这样的同志,真是欣慰!!
回复

使用道具 举报

发表于 2006-4-2 23:40:05 | 显示全部楼层
文字好小呀。看着有点费劲。
回复

使用道具 举报

发表于 2006-4-3 01:39:56 | 显示全部楼层
辛苦,不过字号确实太小了
回复

使用道具 举报

发表于 2006-4-3 06:45:15 | 显示全部楼层
字号小是网站设置上的问题,与翻译没关系,你们看看其他语言版本的,字号一样小。
回复

使用道具 举报

 楼主| 发表于 2006-4-3 07:38:15 | 显示全部楼层
嗯,字体是没办法,最多只能控制在句子中间是否加个换行什么的

另外,对于2楼蜻蜓的意见:我个人觉得“(以前/先前)的投票项目结果”略有些不太顺口,大家觉得呢?
回复

使用道具 举报

发表于 2006-4-3 10:23:22 | 显示全部楼层
Youth的效率真不是盖的。。。
前些日子刚知道Youth准备翻译,今天内容就出来了。。。
又一个网站红旗飘扬了。
-----------------------------------------------------------------
Results of previous POLLs -> 以前的投票结果
这个应该还可以吧?
或者:投票结果汇总。。
回复

使用道具 举报

 楼主| 发表于 2006-4-3 12:49:03 | 显示全部楼层
faq内容太多,抽空先把poll部分翻译了,继续faq...

投票那个翻译就暂时也不改吧

这个网站的翻译是在网站上进行的,大致流程是:修改=》提交=》下一条目,效率不太高,尤其是涉及到可以写html标记的内容。然后也不方便多人同时翻译。只好慢慢来了:)
回复

使用道具 举报

发表于 2006-4-3 18:13:55 | 显示全部楼层
要是方便,把 http://cn.boincstats.com/ 下面的项目图片的链接都链到我们的中文站里吧。
回复

使用道具 举报

 楼主| 发表于 2006-4-3 18:25:29 | 显示全部楼层
这个没办法,只能修改上面现有的一些文字:(

倒是faq中的团队那一块,我链接的都是@china的团队:)
回复

使用道具 举报

 楼主| 发表于 2006-4-3 19:39:35 | 显示全部楼层
基本差不多了....除了两篇关于sztaki的faq,数学知识太差,无法翻译:(
回复

使用道具 举报

 楼主| 发表于 2006-4-3 19:41:41 | 显示全部楼层
Let n be an integer greater than one. When we speak of number systems in the original sense, we use the fact that each natural number z can be written uniquely in the finite form



We say that n is the base of the number system, the dj are called the digits. If n = 2 then we speak of a binary number system. These systems are too poor to represent negative numbers so we need a sign. If we allow the base to be a negative integer, a representation of all integers may become possible. Such, for example if we use the base -2, each integer has a form



This can be generalized for the algebraic integers of a finite extension of the rational number field. A simple example: all the Gaussian integers (complex numbers of the form x+yi, where x,y are integers) can be written uiquely in the base (-1+i) as follows



Using linear algebra we can define number systems in an even more general way. The base is now a matrix and the digits are vectors. We can reformulate the previous example. Each two-dimensional integer vector has a representation as a finite sum



where



and



We speak of a binary system if the determinant of M is ±2. In this case there are only two digits, one of them being the origin. This means that if we have a number system then every integer vector can be represented as a finite series of 0s and 1s.

Not every matrix M can be a number system base. Until now no characterisation of ”good” matrices have been given. There are sufficient conditions and there are necessary ones but the gap between them is too large. There is no known efficient method of dealing with matrices that fulfil necessary conditions but fail sufficient conditions. One thing to note is that if we fix the determinant and the dimension then roughly speaking there are only a finite number of possible matrices.

[ Last edited by Youth on 2006-4-3 at 19:44 ]
回复

使用道具 举报

 楼主| 发表于 2006-4-3 19:43:32 | 显示全部楼层

还有一篇,望各路高人相助:)

The program aims at finding many generalized binary number systems. An extensive search is performed in the finite set of matrices of given size fulfilling some necessary conditions. The difficulty is that the size of this finite set is an exponantial function of the dimension. It now seems possible to attack the case of 11 ´ 11 matrices. To check further necessary conditions the program performs a lot of floating-point calculation. Thus, a lot of CPU time is needed. Luckily, parallelization is possible and we can benefit of running on several machines.

The program outputs a list of matrices (being more precise characteristic polynomials) that are already likely to be number system bases. This list is processed by another program (which does not need so much CPU). The final result is then a (complete) list of binary number systems in a fixed dimension.

Thereafter we perform information theoretical analysis. The number systems provide a binary representation of integer vectors. Using coordinates we have another (more standard) representation. The two representations usually differ in length. Besides, vectors close to each other in the space can have binary representations that look very different. These observations suggest that one could apply number systems in data compression, coding or cryptography.

Number systems are interesting from a geometrical point of view, too. If we allow negative powers of M to appear in the binary representation we get a possibly infinite representation of real vectors (we could say that we use a radix point). The boundary of the set of vectors with binary representation containing only negative powers of M (the set H of numbers with zero integer part) has mostly fractional dimension (it is a „fractal”). The output of the program can be used to analyze these sets. This means topologocal analysis, e.g. calculation of the dimension, connectedness etc. If we use the matrix M above, we get the following set.



Finally, knowing all matrices up to a given dimension could help us to a deeper understanding of the mathematics of generalized number systems.

[ Last edited by Youth on 2006-4-3 at 19:45 ]
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 新注册用户

本版积分规则

论坛官方淘宝店开业啦~
欢迎大家多多支持基金会~

Archiver|手机版|小黑屋|中国分布式计算总站 ( 沪ICP备05042587号 )

GMT+8, 2025-5-7 21:32

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表