|
楼主 |
发表于 2006-4-3 19:43:32
|
显示全部楼层
还有一篇,望各路高人相助:)
The program aims at finding many generalized binary number systems. An extensive search is performed in the finite set of matrices of given size fulfilling some necessary conditions. The difficulty is that the size of this finite set is an exponantial function of the dimension. It now seems possible to attack the case of 11 ´ 11 matrices. To check further necessary conditions the program performs a lot of floating-point calculation. Thus, a lot of CPU time is needed. Luckily, parallelization is possible and we can benefit of running on several machines.
The program outputs a list of matrices (being more precise characteristic polynomials) that are already likely to be number system bases. This list is processed by another program (which does not need so much CPU). The final result is then a (complete) list of binary number systems in a fixed dimension.
Thereafter we perform information theoretical analysis. The number systems provide a binary representation of integer vectors. Using coordinates we have another (more standard) representation. The two representations usually differ in length. Besides, vectors close to each other in the space can have binary representations that look very different. These observations suggest that one could apply number systems in data compression, coding or cryptography.
Number systems are interesting from a geometrical point of view, too. If we allow negative powers of M to appear in the binary representation we get a possibly infinite representation of real vectors (we could say that we use a radix point). The boundary of the set of vectors with binary representation containing only negative powers of M (the set H of numbers with zero integer part) has mostly fractional dimension (it is a „fractal”). The output of the program can be used to analyze these sets. This means topologocal analysis, e.g. calculation of the dimension, connectedness etc. If we use the matrix M above, we get the following set.

Finally, knowing all matrices up to a given dimension could help us to a deeper understanding of the mathematics of generalized number systems.
[ Last edited by Youth on 2006-4-3 at 19:45 ] |
|