找回密码
 新注册用户
搜索
查看: 5495|回复: 6

[分享] GPU计算能力列表

[复制链接]
发表于 2009-12-15 02:27:27 | 显示全部楼层 |阅读模式
终于找到了

http://www.gpugrid.net/forum_thread.php?id=1150

Message 10607 - Posted 16 Jun 2009 16:11:44 UTC

Last modified: 16 Jun 2009 16:15:39 UTC

For those interested in buying a CUDA card or adding one to a GPU project, I collected some reported Boinc GPU ratings, added some I tested and create a Boinc GFLOPS performance list.
Note. These are hopefully ALL Native scores only!

CUDA card list with Boinc ratings in GFLOPS

The following are mostly compute capability 1.1:

GeForce 8400 GS PCI 256MB, est. 4GFLOPS
GeForce 8400 GS PCIe 256MB, est. 5GFLOPS
GeForce 8500 GT 512MB, est. 5GFLOPS
Quadro NVS 290 256MB, est. 5GFLOPS
GeForce 8600M GS 256MB, est. 5GFLOPS
GeForce 8600M GS 512MB, est. 6GFLOPS
Geforce 8500 GT, 512MB PCIe, 6GFLOPS

GeForce 9600M GT 512MB, est. 14GFLOPS
GeForce 8600 GT 256MB, est. 14GFLOPS
GeForce 8600 GT 512MB, est. 15GFLOPS
GeForce 9500 GT 512MB, est. 15GFLOPS
GeForce 8600 GTS 256MB, est. 18GFLOPS

GeForce 9600 GT 512MB, est. 34GFLOPS
GeForce 9600 GT 512MB, est. 37GFLOPS
GeForce 8800 GTS, 640MB, est. 41GFLOPS [compute capability 1.0]
Geforce 9600 GSO, 768MB (DDR2) 46GFLOPS
Geforce 9600 GSO, 384MB (DDR3) 48GFLOPS

GeForce 8800 GT 512MB, est. 60GFLOPS
GeForce 8800 GTX 768MB, est. 62GFLOPS [compute capability 1.0,] (OC)?
GeForce 9800 GT 1024MB, est. 60GFLOPS
GeForce 9800 GX2 512MB, est. 69GFLOPS

GeForce 8800 GTS 512MB, est. 77GFLOPS
GeForce 9800 GTX 512MB, est. 77GFLOPS
GeForce 9800 GTX+ 512MB, est. 84GFLOPS
GeForce GTX 250 1024MB, est. 84GFLOPS

Compute capability 1.3:

GeForce GTX 260 896MB (192sp), est. 85GFLOPS
Tesla C1060 1024MB, est. 93GFLOPS (only)?
GeForce GTX 260 896MB, est. 100GFLOPS
GeForce GTX 260 896MB, est. 104GFLOPS (OC)?
GeForce GTX 260 896MB, est. 111GFLOPS (OC)?
GeForce GTX 275 896MB, est. 123GFLOPS
GeForce GTX 285 1024MB, est. 127GFLOPS
GeForce GTX 280 1024MB, est. 130GFLOPS
GeForce GTX 295 896MB, est. 106GFLOPS (X2=212)?

You should also note the following if you’re buying a new card or thinking about attaching it to a CUDA project:

Different cards have different numbers of shaders (the more the better)!
Different speeds of shader and RAM will effect performance (these are sometimes factory over clocked and different manufacturers using the same GPU chipset and speed can tweak out slightly different performances)!
Some older cards use DDR2 while newer cards predominately use DDR3 (DDR3 is about 20% to 50% faster but varies, faster is better)!
The amount of RAM (typically 256MB, 384MB, 512MB, 768MB, 896MB and 1GB) will significantly affect performance (more is better)!
Some older cards may be PCI, Not PCI-E (PCI-E is faster)!
Mismatched pairs of PCIE cards will likely underperform.

If you overclock your Graphics card, you will probably get more performance, but you might get more errors and you will reduce the life expectancy of the card, motherboard and PSU - you probably know this already ;)

If you have a slower card (say under 10GFLOPS) don’t attach it to the GPU-Grid; you are unlikely to finish any tasks in time, so you will not produce any results or get any points. You may wish to attach to another project that uses a longer return deadline (Aqua-GPU for example). With a 20GFLOPS card most tasks will probably timeout. Even with a 9600 GT (about 35GFLOPS) your computer would need to be on most of the time to get a good success/failure ratio.

Please post your NATIVELY CLOCKED Boinc GFLOPS Ratings here, or any errors, to create a more complete list.
You can find them here; Open Boinc (Advanced View), select the Messages Tab, about the 12th line down it will say CUDA Device... or No CUDA devices found. Include Card Name, Compute Capability (1.0, 1.1 or 1.3 for example), RAM and est. GFLOPS. Even if it is already on the list, it will confirm the ratings, and help other people decide what graphics card they want to get.

PS. If you want more details about an NVIDIA card look here, http://en.wikipedia.org/wiki/Com ... cs_Processing_Units

Thanks,
回复

使用道具 举报

发表于 2009-12-15 09:07:11 | 显示全部楼层
A饭路过
回复

使用道具 举报

发表于 2009-12-15 09:11:45 | 显示全部楼层
支持,学习了
回复

使用道具 举报

发表于 2009-12-15 13:08:13 | 显示全部楼层
AMD的计算方式应该不一样

Radeon HD5870 1024MB, est. 2720GFLOPS
回复

使用道具 举报

 楼主| 发表于 2009-12-16 03:03:40 | 显示全部楼层
在我知道nv有linux驱动之后就一直喜欢n卡,当时a卡还是ati
回复

使用道具 举报

发表于 2009-12-16 08:21:52 | 显示全部楼层
9600gso果然是性价比之选。
回复

使用道具 举报

发表于 2009-12-16 08:34:08 | 显示全部楼层

回复 #4 MythCreator 的帖子

AMD的浮点性能要除以5
http://bbs.expreview.com/thread-25583-1-2.html

2.72 Tflops??那么RV870 一般情况下单精度浮点性能只有544Gflops而已,刚好接近GF100的双精度浮点性能
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 新注册用户

本版积分规则

论坛官方淘宝店开业啦~
欢迎大家多多支持基金会~

Archiver|手机版|小黑屋|中国分布式计算总站 ( 沪ICP备05042587号 )

GMT+8, 2025-5-10 02:06

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表