认领第 109 篇论文。
109. To milliseconds and beyond: challenges in the simulation of protein folding.达到毫秒级甚至超越毫秒级:蛋白质折叠过程在分子动力学研究和模拟中面临的挑战
Lane TJ, Shukla D, Beauchamp KA, Pande VS. Current Opinion in Structural Biology (Feb 2013)
Lane TJ, Shukla D, Beauchamp KA, Pande VS 发表于《现代结构生物学评论(Current Opinion in Structural Biology)》2013年2月刊

The folding times accessible by simulation have increased exponentially over the past decade. Shown are all protein folding simulations conducted using unbiased, all-atom MD in empirical force-fields reported in the literature. Some folding times for the same protein differ, due to various mutations. FAH results are in blue, results from Shaw’s Anton supercomputer are in red.
在过去的十年里,通过分子动力学模拟技术,对蛋白质折叠过程的观测时间分辨率取得了成倍的提高。图中所显示的,是目前已发表在文献报告中的,采用在实验室领域内已得到公认的全原子水平的分子动力学模拟技术,对蛋白质折叠过程进行模拟所取得的研究成果。对于相同的蛋白质,折叠过程会出现各种不同的突变。图中横坐标显示研究成果取得的年份,纵坐标显示研究成果对应的蛋白质折叠过程观测时间分辨率,纵坐标单位是微秒(μs)。图中通过 Folding@home 项目取得的研究成果用蓝色圆点标记,通过 Shaw’s Anton 超算(美国 David Shaw’s DESRES 研究所的分子动力学模拟专用超级计算机 Anton)取得的研究成果用红色圆点标记。
SUMMARY.
概要
This a review of protein folding achievement from Folding@home and other researchers. Our findings demonstrate that Folding@home is capable of simulating large, complex, and slow-folding proteins, beyond the capabilities of other systems, including the specialized hardware in the supercomputer from David Shaw’s DESRES group.
这是 Folding@home 项目及其他研究人员在研究观测蛋白质的折叠过程所取得的成果。我们的研究成果表面,Folding@home 能够实现对大型、复杂、缓慢折叠的蛋白质进行模拟,已经超越了其他系统,甚至包括美国 David Shaw’s DESRES 研究所专用超级计算机的能力。
ABSTRACT.
摘要
Quantitatively accurate all-atom molecular dynamics (MD) simulations of protein folding have long been considered a holy grail of computational biology. Due to the large system sizes and long timescales involved, such a pursuit was for many years computationally intractable. Further, sufficiently accurate forcefields needed to be developed in order to realistically model folding. This decade, however, saw the first reports of folding simulations describing kinetics on the order of milliseconds, placing many proteins firmly within reach of these methods. Progress in sampling and forcefield accuracy, however, presents a new challenge: how to turn huge MD datasets into scientific understanding. Here, we review recent progress in MD simulation techniques and show how the vast datasets generated by such techniques present new challenges for analysis. We critically discuss the state of the art, including reaction coordinate and Markov state model (MSM) methods, and provide a perspective for the future.
定量准确的对蛋白质折叠过程进行全原子水平的分子动力学模拟(Molecular Dynamics simulations,简称 MD simulation),长期以来都被称为是计算生物学的“圣杯”。由于蛋白质折叠过程与大系统尺度、长时间尺度密切相关,所以对“圣杯”的追求多年来一直难以实现。此外,还需要足够精确的全原子水平的力场,才能模拟真实的蛋白质折叠过程。这十年来,终于,我们首次看到了在毫秒级时间尺度上实现对蛋白质折叠从头开始到形成稳定结构的分子动力学模拟的报道。虽然在采样效率、力场精度上已经取得了进步,但是又提出了新的挑战:如何将庞大的分子动力学模拟数据库(MD datasets)融入科学诠释。本文中,我们回顾了分子动力学模拟( MD simulation)技术的发展进程,并展示了如何通过技术将庞大的数据库应用于科研分析的这一新的挑战。我们批判性地讨论了当前技术的状态,包括应用反应坐标(Reaction Coordinate)、马尔可夫模型(Markov state model,简称 MSM)预测蛋白质结构的方法,并为未来预测蛋白质结构的方法提供了一个全新的视角。
---
备注:已翻译完毕,较原文内容略有些文字说明增补。
|